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Abstract. Advanced time- and position-sensitive multi-hit detectors allow to study molecular breakup pro-
cesses into two, three, and more massive fragments by translational spectroscopy. We discuss the feasibility
to perform kinematically complete final state analysis of complex molecular dissociation processes using
such detectors. We have developed new algorithms to determine – for an arbitrary number of fragments –
the fragment momentum vectors in the center-of-mass frame from the measured positions and arrival time
differences. These algorithms can easily be implemented to perform online data reduction in coincidence
experiments. We have tested the new data reduction strategies in an experimental study and in Monte-
Carlo simulations of realistic experimental conditions. We show that the new algorithms can discriminate
between two-, three-, and four-body decay of a four-atomic molecule and can uniquely determine the mo-
mentum vectors of all fragments. For two-body decay, we find that the accuracy of the new algorithm is
superior to the frequently used approximate formula introduced by DeBruijn and Los. We demonstrate
this improvement in the evaluation of experimental data for the decay of laser-excited triatomic hydrogen
H3 3s 2A′1 (N = 1,K = 0) into H + H2(v, J) fragment pairs.

PACS. 07.05.Kf Data analysis: algorithms and implementation; data management –
39.90.+d Other instrumentation and techniques for atomic and molecular physics – 82.50.Fv Photolysis,
photodissociation, and photoionization by infrared, visible, and ultraviolet radiation

1 Introduction

To understand the decay dynamics of atomic and molec-
ular systems, kinematically complete investigations of the
final state distributions have to be performed. In the case
of atomic and molecular multiple ionization, the feasibil-
ity to study momentum correlations in the final states
has been demonstrated [1,2]. For larger molecules, disso-
ciation processes into two and more massive fragments
constitute major decay pathways [3–6]. To investigate
laser-induced molecular dissociation, velocity map imag-
ing techniques have been developed [7–10] which are, how-
ever, not applicable to coincidence measurements.

The formation of neutral fragments in molecular disso-
ciation plays an important role in astrophysics and plasma
physics. Fast-beam techniques are elegant methods to
study such processes. The fragments are fast in the lab-
oratory frame and can be detected in coincidence by mi-
crochannel plates and position-sensitive anodes with high
efficiency. Laser-postionization is thus not required. Trans-
lational spectroscopy using time- and position-sensitive
detectors was pioneered by de Bruijn and Los [11] and has
been used to study dissociative charge transfer of H+

2 and
N+

2 [12]. The production of fast beams by photodetach-
ment of negative ions [13] has been pursued by groups in
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Berkeley [14] and San Diego [15,16]. By laser-excitation of
fast metastable molecules, the initial state can be prepared
in a well-defined quantum state. This method is well estab-
lished to study molecular two-body breakup [17–22]. Due
to recent progress in the development of time- and posi-
tion sensitive multi-particle-detectors [23–26] which com-
bine large detection areas with high spatial and temporal
resolution, kinematically complete investigations of the fi-
nal state distributions for more than two fragments have
become feasible. Kinematically complete investigations of
the decay of laser-excited neutral H3 into three H(1s)
atoms using such detectors were recently reported [27].

In this paper, we present novel data reduction strate-
gies to study molecular breakup processes in fast-beam
experiments aimed to determine the fragment momentum
vectors in the center-of-mass frame for an arbitrary num-
ber of fragments.

2 Experimental

Figure 1 shows schematically a translational spectrome-
ter to study molecular fragmentation processes. The par-
ent molecules with mass M are prepared in a collimated
beam with a translational energy E0 of several keV.
The fast beam propagates along the x-direction in the
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Fig. 1. Fast-beam translational spectrometer for the investi-
gation of molecular many-body dissociation processes. (a) The
fast parent molecules with mass M and energy E0 dissociate at
position (x0, y0, z0) and time (t0) in the interaction region close
to the origin. The undissociated molecules are intercepted by
a beam flag (F). The fragments are detected in coincidence by
a time- and position-sensitive multi-hit detector (PSD). The
positions (yi, zi) and the arrival times (ti) of the products in
the plane x = L are measured. (b) Linear superposition of
the center-of-mass velocities ui = (uix, uiy, uiz) of n fragments
with masses mi with the velocity v0 = (v0x, v0y, v0z) of the
center-of-mass motion.

laboratory frame. In a primary process such as laser-
excitation, dissociative charge transfer, or atomic colli-
sions, the dissociation into n fragments with masses mi

and center-of-mass velocities ui = (uix, uiy, uiz) is initi-
ated. The position of fragmentation (x0, y0, z0) shows a
distribution over the finite interaction region (IR). The
lateral extension of the interaction region usually corre-
sponds to the diameter of the fast primary beam. The
longitudinal extension is determined by the dissociation
process, e.g. the beam diameter of the excitation laser,
the length of the collision cell, and/or the lifetime of
the molecular initial state. After dissociation, the frag-
ments separate from each other and from the center-of-
mass which moves with velocity v0 = (v0x, v0y , v0z) in
the laboratory frame. The transverse components of v0

are due to the finite divergence of the fast beam and are
usually much smaller than the longitudinal component
(v0y � v0x, v0z � v0x). The undissociated part of the
parent molecular beam is intercepted by a beam flag (F).
The fragments are detected in coincidence by a time- and
position-sensitive multi-hit detector (PSD). The positions
(yi, zi) and the arrival times ti of the fragments in the
plane x = L are measured. If the time of the molecular
dissociation process t0 is well-known, (e.g. in experiments
with pulsed lasers or pulsed molecular beams) the abso-
lute flight times ti − t0 of the fragments can additionally
be measured. In most cases, t0 is unknown, and only the
flight time differences (ti − t1) of the fragments can be
determined by the detector.

3 Determination of the fragment momenta

We consider the fragmentation of a parent molecule mov-
ing with a velocity v0 = (v0x, v0y , v0z) in the labora-
tory frame into products with c.m. velocity vectors ui =
(uix, uiy, uiz). The dissociation is taking place at position
(x0, y0, z0). The positions and arrival-times (yi, zi, ti) of
the fragments measured by the PSD in the plane x = L
are given by the 3n equations of motion

(v0x + uix)(ti − t0) + x0 = L, (1)
(v0y + uiy)(ti − t0) + y0 = yi, (2)
(v0z + uiz)(ti − t0) + z0 = zi. (3)

The objective is to invert equations (1–3) and to deter-
mine the vectors ui from the measured quantities. We first
develop the algorithm for an arbitrary number n of frag-
ments. Then, we discuss special cases.

3.1 Ideal experimental conditions

In an ideal experimental setup, the time of fragmenta-
tion t0 is known and the position of fragmentation coin-
cides with the origin of the laboratory coordinate system
(x0 = y0 = z0 = 0). Divergence and energy spread of
the primary beam vanish. The momentum of the center
of mass is not changed in the dissociation process. In this
case, the transverse components of the c.m.-velocity van-
ish (v0y = v0z = 0) and the longitudinal component v0x

is known from the kinetic energy E0 = M v2
0x/2 of the

primary molecular beam. The solution of equations (1–3)
is straightforward:

uix = L/(ti − t0)− v0x, (4)
uiy = yi/(ti − t0), (5)
uiz = zi/(ti − t0). (6)

To calculate the fragment momenta and energies, the
masses mi must be known. If all of the fragments are de-
tected in coincidence, we can determine the mi from the
measured data using mass- and momentum conservation.
The data from a single coincidence event can be cast into
a system of linear equations:u1x u2x . . . unx

u1y u2y . . . uny
u1z u2z . . . unz
1 1 . . . 1



m1

m2

...
mn

 =

 0
0
0
M

 · (7)

With the fragment velocities ui already known from
equations (4–6), momentum and mass conservation equa-
tion (7) allows us to determine the masses mi of up to
n = 4 fragments. For less than 4 fragments, the equa-
tion system is overdetermined. In the latter case, the
redundant information is either used for a consistency
check, or the equation system is reduced by removing
rows (keeping the last row), or by combining coordinates

(uir =
√
u2
iy + u2

iz).
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If the rank of the matrix is less than n, no unique so-
lution exists. This is the case for n > 4. It may also occur
for certain fragmentation configurations with n ≤ 4, e.g.
if the velocity vectors of 4 fragments are contained in a
plane. Usually, the nature of the parent molecule allows
only a finite number of fragmentation patterns and it is
not necessary to invert equation (7). We have to assign
the fragment masses mi from a finite list of permutations
miα. The permutations are chosen to automatically ful-
fill mass conservation. For each event, the permutation α
in the list miα which fulfills equation (7) is determined.
This procedure can be successfully applied in the case of
a dissociation into more than 4 fragments (n > 4).

3.2 Real experimental conditions

In reality, the primary beam has a finite divergence, and
the position of fragmentation (x0, y0, z0) shows a distribu-
tion over the interaction region. The typical experimental
situation is that the transverse components (v0y , v0z) of
the center-of-mass velocity are appreciably smaller than
the longitudinal component which means that to a good
approximation v0x ≈

√
2E0/M . If only time differences

between the fragments are measured, equations (4–6) can-
not be used. Rather momentum conservation must be in-
troduced to determine the fragment velocity vectors ui.

To assign the fragment masses from a finite list of per-
mutations miα, approximate values of the velocities ui
are sufficient. We may estimate the time of fragmentation
t0 by

t0 =
∑
i

ti/n− L/v0x (8)

and use equations (4–6) to calculate approximate veloc-
ity vectors ũi. Then, we search for the permutation α of
fragment masses miα which approaches most closely the
correct solution bx = by = bz = 0 of equation (9)∑

i

miαũix = bx(α);
∑
i

miαũiy = by(α);∑
i

miαũiz = bz(α). (9)

In the 3n relations equations (1–3), there are 3n + 6
unknown quantities: the fragment velocity vectors ui,
the point of dissociation (x0, y0, z0), the transverse c.m.-
velocity components (v0y, v0z), and the time of fragmen-
tation t0. If the correct masses mi have been assigned,
momentum conservation equation (7) gives 3 additional
relations. Three unknown quantities must be removed us-
ing physically reasonable assumptions. In a crossed-beam
experiment, the length of the interaction region is much
smaller than the flight length L. Usually, it is a good ap-
proximation to set x0 = 0. We have two choices to elimi-
nate two more unknown quantities. Either, we neglect the
lateral extension of the fast beam (y0 = z0 = 0), or we as-
sume that the beam divergence vanishes (v0y = v0z = 0).
This decision depends on the experimental situation. With

these assumptions, the unknown ui can be determined for
any number of fragments n. The complexity of the equa-
tion system (1–3) results from the implicit dependence be-
tween the unknown time of fragmentation t0 and the frag-
ment velocities. The hard part is the solution of equation
system (1) for the longitudinal fragment velocity compo-
nents uix.

3.2.1 Iterative determination of the longitudinal fragment
velocity components

Keeping in mind that the fragment velocities in the c.m.-
frame ui are typically much smaller than the velocity v0x

of the center-of-mass, we develop an iterative solution of
equation (1). For x0 = 0, we find from equation (1) the
arrival time differences between the ith and the first frag-
ment ti − t1:

ti − t1 = L
u1x − uix

(v0x + uix)(v0x + u1x)
· (10)

Equation (10) establishes n − 1 relations for the velocity
differences dix ≡ u1x − uix:

dix = (ti − t1)(v0x + uix)(v0x + u1x)/L i = 2...n
(11)

which weakly depend on the values uix. Momentum con-
servation equation (7) for the x-component allows us to
determine the uix

u1x =
n∑
i=2

midix/M uix = u1x − dix i = 2...n

(12)

from the dix. Equations (11, 12) constitute a fixed-point
equation

ux = T (ux) (13)

with an operator T mapping linear space Rn to itself.
The solution of equation (13) can be found by itera-
tively applying the operator T to the fragment velocities:
u(k+1)
x = T (u(k)

x ). Suitable starting values are u(0)
ix = 0

for i = 1...n. Improved values u(k+1)
ix are determined by

re-substituting the u(k)
ix into equations (11, 12) using the

measured time differences ti − t1, the flight length L, and
the longitudinal velocity v0x. For time differences and
fragment velocities occurring in a typical fast-beam ex-
periment, convergence of the series of u(k)

ix to the correct
values can be proven. Note that the algorithm can be im-
plemented using additions and multiplications only. The
divisions by L and M can be replaced by multiplications
with pre-defined constants L−1 and M−1 to improve float-
ing point performance.
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3.2.2 Transverse fragment velocity components
for vanishing beam extension

After evaluating the longitudinal components uix of the
fragment velocity vectors, we next determine the inverse
flight times t̃i from equation (1) with x0 = 0:

t̃i ≡ (ti − t0)−1 = (v0x + uix)/L (14)

and insert them into equation (2) assuming y0 = 0:

v0y + uiy = yit̃i · (15)

From momentum conservation equation (7), we find

v0y =
∑
i

miyit̃i/M (16)

which allows us to determine the transverse velocity com-
ponent of the center-of-mass v0y . The fragment velocity
components in the center-of-mass frame are:

uiy = yit̃i − v0y . (17)

Analogous equations for the z-components of the velocities
are derived by using equation (3) instead of equation (2).

3.2.3 Transverse fragment velocity components
for vanishing beam divergence

Here, we neglect the transverse velocity components of the
primary beam v0y = v0z = 0, but let the interaction region
be of finite size (y0 6= 0, z0 6= 0). We multiply equation (2)
by mit̃i, sum over i, and use momentum conservation. We
find for y0

y0 =
∑
i

mit̃iyiL/(Mv0x). (18)

Note that y0 differs from the transverse center-of-mass
velocity v0y in equation (16) only by a factor L/v0x which
is the travel time of the center-of-mass. By inserting y0

into equation (2) and multiplying by t̃i, we determine the
fragment velocity components uiy

uiy = t̃i(yi − y0). (19)

The analogous equation holds for the z-component.

3.3 Special cases

In the case of a molecular dissociation into three frag-
ments (n = 3) with equal masses mi = M/3, the de-
termination of the fragment momentum vectors by equa-
tions (11, 12, 17) can be simplified in a straightforward
manner. This algorithm has been successfully applied to
study the three-body decay of the triatomic hydrogen
molecule H3 [27].

In the case of a decay into two fragments with masses
m1 and m2, the momentum conservation in equation (12)

establishes the relation u1x = m2dx/M and u2x =
−m1dx/M between the fragment velocity vectors and
the relative velocity d ≡ u1 − u2. To assign fragment
masses, we introduce the mass ratio Z = m2/m1. Us-
ing equation (2) with the approximations v0y = 0 and
t1 − t0 ≈ L/v0x, and the abbreviation ∆T = t2 − t1, we
find for Z:

Z = −u1y

u2y
≈
∣∣∣∣y1

y2
(1− v0x∆T

L
)
∣∣∣∣ · (20)

It is useful to replace the yi in equation (20) by ri =√
y2
i + z2

i . Equation (11) simplifies to

dx/v0x =
v0x∆T

L

(
1 +

m2 −m1

M
dx/v0x

− m1m2

M2
(dx/v0x)2

)
(21)

and allows to iteratively calculate the x-component of
the fragment velocity difference dx. According to equa-
tions (14–17) for vanishing extension of the interaction
region, the transverse component of the c.m.-velocity v0y

becomes

v0y = (m1y1 + m2y2)
v0x

ML
+ (y1 − y2) dx

m1m2

M2
· (22)

The y-component of the difference velocity assumes the
form

dy = (y1 − y2)v0x/L + (y1m2 + y2m1)dx/(ML) · (23)

The corresponding equations for vanishing beam diver-
gence are straightforward.

In the case of two-body decay, a relation for dy can be
derived without explicitly determining y0 or v0y. We cal-
culate the difference y1 − y2 from equation (2) neglecting
the beam divergence (v0y = 0), use momentum conserva-
tion, eliminate the absolute flight times by equation (14),
and insert the time differences using equation (11)

y1 − y2 = dyv0x∆T/dx. (24)

The velocity difference dy can be calculated from the mea-
sured position- and time-differences, the c.m.-velocity v0x

and the longitudinal fragment velocity dx. The equations
for the z-component of the difference velocity are analo-
gous.

The total kinetic energy release W is

W =
m1m2

2M
(d2
x + d2

y + d2
z) · (25)

To check the consistency with the often used approximate
formula given by deBruijn and Los [11], we perform the
first steps of the iteration equation (21) analytically with
the start value dx = 0:

1. dx/v0x =
v0x∆T

L

2. dx/v0x =
v0x∆T

L

(
1 +

m2 −m1

M

v0x∆T

L

− m1m2

M2

(
v0x∆T

L

)2)
· (26)
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With the implicit relation equation (24) and the abbrevi-
ations ∆y = y1 − y2 and ∆z = z1 − z2, we find for W

W =
m1m2

2 M L2
v2

0x

(
∆y2 +∆z2 + (v0x∆T )2

)
×
(

1 +
m2 −m1

M

v0x∆T

L
+ ...

)2

. (27)

If we omit quadratic and higher order terms in (v0x∆T/L)
in equation (27) and abbreviate R2 = ∆y2 + ∆z2, we
obtain

W ≈ E0
m1m2

M2 L2

(
R2 + (v0x∆T )2

)
×
(

1 + 2
m2 −m1

M

v0x∆T

L

)
· (28)

This equation corresponds to the approximate formula
given by de Bruijn and Los (Eq. (7) in Ref. [11]).

4 Monte-Carlo simulations

In order to model realistic conditions in a fast-beam ex-
periment, we have developed Monte-Carlo simulations us-
ing random number generators (ran1 in Ref. [28]). They
allow us to test the performance of the data reduction pro-
cedures described in Section 3 and to study the effects of
the assumptions made in deriving the different algorithms.
Monte-Carlo simulations also allow us to calculate the ge-
ometric detector efficiencies required to correct measured
data. For each simulated decay process, we calculate n mo-
mentum vectorsmiui uniformly distributed in phase space
with the additional restriction of momentum conservation
in the center-of-mass frame and a fixed total kinetic energy
release W0. We then calculate random velocity vectors of
the center-of-mass which model the energy spread ∆E0

and the divergence of the parent molecular beam. The
position of fragmentation is randomly distributed within
the interaction region. We calculate the trajectories of the
fragments and determine the positions and the arrival time
differences of the fragments in the detector plane. We also
check for fragments which are intercepted by a beam flag
or which miss the sensitive area of the detector. Depending
on the number of hits on the detector, we either discard
the event, or start the data reduction algorithm.

4.1 Assignment of the fragment masses

The first step in the data reduction is the assignment of
the fragment masses. This step may only be omitted in the
special case of dissociation into fragments of equal mass.
We first set up a list of all permutations of the possible
fragment masses. (Fragments with identical masses cannot
be distinguished which simplifies this list.) We then esti-
mate the time of fragmentation by equation (8), and the
approximate fragment velocity vectors by equations (4–6).
For each element of the permutation list, we calculate the
approximate transverse momentum components by and bz

of the center-of-mass according to equation (9). The x-
component bx cannot be used because of the uncertainty
in the estimation of t0. Next we determine the permu-
tations αy and αz of the fragment masses for which the
absolute values of by and bz assume minima. If the per-
mutations αy and αz are identical and, additionally, the
apparent transverse momentum is smaller than the em-
pirically determined limit blim√

b2y + b2z ≤ blim (29)

we accept the event and the mass assignment found.
As an example to demonstrate the performance of

the fragment mass assignment, we have investigated the
breakup of neutral CF3 radicals. We anticipate that CF3

in short-lived, electronically excited states can be pro-
duced by dissociative charge transfer of CF+

3 . The CF+
3 ion

is the most abundant fragment ion following electron or
fast-ion impact on CF4 [29,30]. It can easily be produced
in gas discharge sources. One four-body, 2 three-body, and
2 two-body decay channels, are open:

CF3 → C + F + F + F (I), (30)
→ CF + F + F (II), (31)
→ C + F + F2 (III), (32)
→ CF + F2 (IV), (33)
→ CF2 + F (V). (34)

If one fragment of a four-body decay is not observed either
because it was intercepted by the beam flag, missed the
detector area, or was suppressed by the detector electron-
ics, the decay process appears as a triple-hit. The great
value of our data reduction procedure is that it automat-
ically takes care that such events are not mistaken for a
three-body decay.

The results of our Monte-Carlo simulations are sum-
marized in Table 1. For each channel, 10 000 dissociation
events were calculated. The c.m. fragment momentum vec-
tors corresponding to a total kinetic energy release of
W0 = 6 eV were uniformly distributed in phase space.
Typical conditions in a fast-beam translational spectrom-
eter were simulated with a primary energy of 3 keV, an
energy spread of 3 eV, a beam divergence of 0.5 mrad
(FWHM), a beam diameter of 0.4 mm, and a longitudinal
extension of the interaction region of 1 mm (FWHM). A
flight length of L = 1.5 m was chosen and a square beam
flag with 2 × 2 mm2 area was located at xF = 100 mm.
The collection of fragments was not limited by the de-
tector geometry. The fragment hit coordinates and the
arrival time differences at the detector were determined.
The choice of the decision criterion blim in equation (29)
for the acceptance of the mass assignment is a compromise
between the total number of events which survive the pro-
cedure and the efficiency to distinguish between the open
dissociation channels. In our simulations, we have chosen
a limit of blim = 1.5× 10−3Mv0x. In Table 1, the number
of complete events (4 fragment hits for 4-body, 3 hits for
3-body decay) is listed. For all complete events, the mass
assignment is attempted with all open 4-body and 3-body
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Table 1. Four- and three-body decay of CF3: test of the mass assignment by a Monte-Carlo simulation. For each dissociation
channel, the fragment trajectories of 10 000 decay processes were calculated. The fragment collection in a typical fast-beam
translational spectrometer was simulated (details see text). The number of quadruple- and triple-hit events is listed in the table.
The mass assignment was performed as discussed in Section 4.1 and events with a small transverse momentum of the c.m.
(blim = 1.5×10−3Mv0x in Eq. (29)) were accepted. The number of events with correctly assigned masses is given in parentheses.

dissociation channel

detected channel C + 3F CF + 2F F2 + C + F

4-hit events 7349

accepted as C + 3F 5615 (5607)

3-hit events 9777a 8086 7888

accepted as CF + 2F 558 4299 (4297) 493

accepted as F2 + C + F 384 458 3880 (3879)
a If all four fragments reached the detector, one of them was randomly selected

and removed to simulate the electronic collection efficiency.

channels. The number of decays which passed the test
equation (29) are listed in Table 1. For 73% of the simu-
lated 4-body events, all fragments reach the detector, and
for 56% of them the fragment masses can be assigned. The
simulations allow us to determine the number of events
with correctly assigned fragment masses given in paren-
theses in Table 1. We find that the overwhelming part of
the accepted events are assigned correctly. Our procedure
is similarly effective in case of the three-body decay chan-
nels. The non-diagonal entries in Table 1 show that the
condition equation (29) is very efficient in discriminating
between the dissociation channels. More than 90% of the
four body decays for which one of the fragments was in-
tercepted by the flag or otherwise suppressed to model the
electronic collection efficiency were correctly assigned as
4-body decay. The discrimination between the competing
three-body decay processes is even more effective.

To evaluate the two-body decay channels, we deter-
mine the mass ratio Z which may assume the values
Z = 31/38 ≈ 0.82 or Z = 38/31 ≈ 1.23 for channel (33)
and Z = 19/50 = 0.38 or Z = 50/19 ≈ 2.6 for chan-
nel (34). Figure 2 shows spectra of Z calculated by the
Monte-Carlo simulation. The peaks appearing at the ex-
pected positions are broadened due to the divergence of
the primary beam, but can clearly been distinguished from
each other which permits the assignment of the fragment
masses. The differences in peak height are due to the ge-
ometric collection efficiency (interception by beam flag)
which depends on the decay process. Equally important
is the finding that three- and four-body decay channels
for which only two fragments are detected lead to broad
distributions in the mass ratio and can be separated from
two-body decay. Our tests have shown that the mass as-
signment works similarly successful in case of five and
more fragments. The explicit presentation of these results
would significantly lengthen this paper.

Once the masses are assigned correctly, the fragment
velocity vectors are determined by the algorithm devel-
oped in Sections 3.2.1 and 3.2.2. After 4 steps of iteration,
the numerical precision of the longitudinal velocity vector
components is better than 10−4. Under realistic exper-

Fig. 2. Spectrum of the mass ratio Z for two-body decay
of CF3 calculated by Monte-Carlo simulations. The fragment
momentum vectors were calculated for a kinetic energy release
of W0 = 6 eV. The fragment ejection angle was uniformly
distributed. The propagation and detection of the fragments in
a typical translational spectrometer was modeled (parameters
see text). The four peaks in the Z-spectrum correspond to the
decay into (a) F+CF2, (b) CF+F2, (c) F2 +CF, (d) CF2 +F.

imental conditions, the accuracy is only limited by the
primary beam energy spread, the extension of the inter-
action region, and the detector uncertainties. The algo-
rithm equations (11, 12, 17) has been successfully applied
to study the three-body decay of the triatomic hydrogen
molecule H3 [27].

4.2 Two body decay

For two-body decay, a direct comparison between our it-
erative algorithm and the approximate formula given by
de Bruijn and Los [11] is possible. For such a compar-
ison we have performed Monte-Carlo simulations of the
two-body decay of triatomic hydrogen molecules H3. We
have modelled the experimental conditions in the Freiburg
photofragment spectrometer [27] with a primary beam en-
ergy of 3 000 eV, a beam divergence of 0.5 mrad (FWHM),
a flight length of L = 1.5 m, and two circular detector
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Fig. 3. Monte-Carlo simulation of kinetic energy release spec-
tra following two-body decay of H3. For a total kinetic energy
release of W0 = 6 eV and an isotropic distribution of the frag-
ment ejection angle, fragment velocity vectors were calculated.
The fragment propagation and detection in a typical transla-
tional spectrometer was simulated. In the simulations of spec-
tra (a) and (b), the primary beam energy was monoenergetic
and the point of dissociation was localized at the origin. Spec-
tra (c) and (d) were calculated for finite primary beam energy
spread, beam diameter, and extension of the interaction region
(parameters see text). Spectra (a) and (c) were evaluated with
the iterative procedure for vanishing extension of the interac-
tion region equations (21, 23). To calculate spectra (b) and (d),
the approximate formula equation (28) by de Bruijn and Los
[11] was used.

areas of 43 mm diameter centered at y = ± 35 mm,
z = 0 mm. The random c.m. fragment velocity vec-
tors were calculated for a total kinetic energy release of
W0 = 6.000 eV and an isotropic distribution of the frag-
ment ejection angle. The apparent kinetic energy release
spectra are shown in Figure 3. If we assume a monochro-
matic primary beam energy and a localized point of dis-
sociation (x0 = y0 = z0 = 0), the events evaluated by the
iterative algorithm equation (21) for vanishing extension
of the interaction region equation (23) fall into a single
bin in the apparent W -spectrum Figure 3a at the correct
value. Using the approximate formula equation (28), the
apparent W -spectrum in Figure 3b shows a distribution
with a spread of about 5 meV width (FWHM) centered
at 6.005 eV. The shift in energy by 5 meV results from
the higher order terms in v0x∆T/L which were neglected
in the approximate formula. The predicted width of the
spectrum Figure 3b is due to the divergence of the pri-
mary beam. This demonstrates that our new algorithm is
immune against transverse velocity components of the pri-

Fig. 4. Two-body decay of H3 molecules following laser-
preparation in the vibrationless 3s 2A′1 (N = 1, K = 0)
state. The data were measured at a primary beam energy of
3 000 eV. The kinetic energy release spectra have been evalu-
ated from the raw data using (a) the approximate formula by
deBruijn and Los, and (b) our new iterative algorithm. The
structures in the kinetic energy release spectra shown in the
energy range 6.9 to 7.8 eV can be assigned to rotational states
of the H2X

1Σ+
g (v, J) fragment.

mary beam (if Eq. (23) is used). Our algorithm develops
it’s full advantage in experiments where the divergence
of the primary beam is comparatively large and the size
of the interaction region is very small. Note that equa-
tion (23) cannot compensate for a finite extension of the
interaction region. If the lateral extension of the interac-
tion is very large and the beam divergence comparatively
small, equation (19) must be used to correctly determine
the transverse fragment velocity components.

In some experimental situations, other broadening
mechanisms like the primary beam energy spread, the lon-
gitudinal extension of the interaction region, and the un-
certainties of the time- and position measurements may
be more important than the beam divergence. Spectra (c)
and (d) in Figure 3 were calculated by Monte-Carlo simu-
lations for a primary beam energy spread of 3 eV, a beam
diameter of 0.3 mm, and a longitudinal extension of the in-
teraction region of 1 mm (FWHM). The spectra produced
by the iterative algorithm Figure 3c and the approximate
formula of deBruijn and Los Figure 3d both have simi-
lar widths of 15 meV (FWHM). However, the spectrum
from the approximate formula is systematically shifted to
higher energies by 5 meV.

To demonstrate the relevance of this shift for experi-
mental data, kinetic energy release spectra following two-
body decay of laser-excited H3 molecules in the vibra-
tionless 3s 2A′1 (N = 1,K = 0) state are shown in
Figure 4. The data were measured in the new Freiburg
photofragment spectrometer [27] at a primary beam en-
ergy of 3 000 eV. The structures in the kinetic energy re-
lease spectra corresponds to rotationally resolved lines of
the H2X

1Σ+
g (v, J) fragment. The same set of raw ex-

perimental data was evaluated using our new iterative
algorithm (spectrum (a)) and the approximate formula
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by deBruijn and Los (spectrum (b)). The widths of the
rotational structures in the spectra is mainly due to the
longitudinal extension of the interaction region which is
determined by the diameter of the excitation laser and
the lifetime of the excited state. Due to the higher order
terms in v0∆T/L neglected in the approximate formula,
spectrum (b) in Figure 4 is shifted by about 8 meV to
higher energies which is about 1/4 of the line width. Such
effects are important to take full advantage of high en-
ergy resolution photofragment spectrometers. As a conse-
quence, the accurate data reduction algorithm is manda-
tory to determine the energy of the laser-excited H3 state
above the H + H2 dissociation limit and to test modern
quantum chemical ab initio calculations.

5 Conclusions

We have developed new data reduction strategies to inves-
tigate molecular decay processes into an arbitrary number
of massive fragments by translational spectroscopy. The
procedures allows us to determine the fragment masses
and to distinguish between different breakup processes.
The vectorial momenta of all fragments are determined by
a newly developed algorithm. This opens the possibility to
perform kinematically complete final state investigations
of complex molecular decay processes.

We have tested the new procedures by Monte-Carlo
simulations which model the measured data. As an ex-
ample, we have studied the discrimination between two-,
three- and four-body decay of the radical CF3. In the case
of two-body decay of H3 , we have found that the accuracy
of the new algorithm is superior to that of a often-used
approximate formula. We have shown that the improved
accuracy is important to evaluate experimental data and
to compare the results to theoretical calculations.
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